
c
o

i—
CD

•*-»

c

c/5
0)

0

"D
(1)

O
ZJ
I-

CO
c
3

O
-C
5

ID
IT)

Naval Surface Warfare Center
Carderock Division
West Bethesda, MD 20817-5700

NSWCCD-50-TR-2010/056 August 2010

Hydromechanics Department Report

A Method for Unstructured Mesh-to-Mesh
Interpolation
by

William G. Smith

Michael P. Ebert

I
0£

IT)
i

Q
O
u
5
to

Approved for public release; distribution is unlimited.

20101104159

This page intentionally left blank.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense. Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188) 1215 Jefferson Davis Highway. Suite 1204. Arlington. VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law. no person shall be subject to any penalty for tailing to comply with a collection of information if it does not display a currently
valid OMB control number PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
15-Aug-2010

2. REPORT TYPE
Final

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

A Method for Unstructured Mesh-to-Mesh Interpolation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
602123N

6. AUTHOR(S)

William G. Smith

Michael P. Ebert

5d. PROJECT NUMBER

5e TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES)

Naval Surface Warfare Center
Carderock Division
9500 Macarthur Boulevard
West Bethesda, MD 20817-5700

8. PERFORMING ORGANIZATION REPORT
NUMBER

NSWCCD-50-TR-2010/056

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
ONR 333
Chief of Naval Research
Ballston Centre Tower One
800 North Quincy Street
Arlington, VA 22217-5660

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITORS REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
An efficient method for unstructured mesh-to-mesh interpolation is described. This method uses a
binary space partitioning tree to sort the elements of the source mesh. Using this tree data structure
the source mesh elements can be efficiently searched to find the nearest element for each of the
destination mesh points. Once found, the nearest source mesh element is used to compute barycentric
coordinates which are then used as weighting coefficients for the interpolation.

15. SUBJECT TERMS
Fluid Structure Interaction, Interpolation, Unstructured, Computational Fluid Dynamics,
Binary Space Partition Tree, Barycentric Coordinates

16. SECURITY CLASSIFICATION OF:

a. REPORT
UNCLASSIFIED

b.ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

SAR

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Michael P. Ebert
19b. TELEPHONE NUMBER (include area
code)

301-227-5403

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39 1»

This pa2e intentionally left blank.

Contents

Page

Abstract

Administrative Information

Background

Binary Space Partitioning Tree

Building the Tree

Searching for the Nearest Element 3

Finding the Distance to a Triangle 3

Finding the Distance to an Edge 4

Interpolation 5

Summary 8

References 9

Figures

Page

Figure 1. Pseudo Code for Finding the Distance to a Triangle 4
Figure 2. Pseudo Code for Finding the Distance to an Edge 5
Figure 3. Pseudo Code for Calculating Barycentric Coordinates 6

in

This page intentionally left blank.

Abstract

An efficient method for unstructured mesh-to-mesh interpolation is described. This
method uses a binary space partitioning tree to sort the elements of the source mesh. Using this
tree data structure the source mesh elements can be efficiently searched to find the nearest
element for each of the destination mesh points. Once found, the nearest source mesh element is
used to compute barycentric coordinates which are then used as weighting coefficients for the
interpolation.

Administrative Information

The work described in this report was performed by the Computational Hydromechanics
Division (Code 5700) of the Hydromechanics Department at the Naval Surface Warfare Center,
Carderock Division (NSWCCD). The work was funded by the Office of Naval Research
(Program Officer: Dr. Ki-Han Kim) under the Force Protection Applied Research Program (PE
602123N).

Background

This report describes the code and algorithms used to perform a one way coupling of a
Computational Fluid Dynamics (CFD) solver, and a Computational Structural Dynamics (CSD)
solver. This code was developed at the Naval Surface Warfare Center, Carderock Division under
the FY08 ONR funded Crashback program. Specifically the methods used to transpose the time
varying fluid dynamic surface pressure field computed by the CFD solver, to the wetted faces of
the finite element mesh used in the CSD solver are described. In this report the CFD surface
mesh is referred to as the source mesh, and the CSD mesh as the destination mesh. Transposing
the surface pressure field requires that for each point in the destination mesh, a nearest element is
found in the source mesh from which all desired scalar, and vector quantities may be
interpolated.

Binary Space Partitioning Tree

Due to the relatively large mesh sizes involved (typically greater than lxlO1) a Binary
Space Partition (BSP) tree, a type of binary search tree, is used to sort the elements of the source
mesh. This offers an efficient mechanism for identifying the nearest element in the source mesh
to a given point in the destination mesh. Given the large mesh sizes and that each destination
mesh point needs an interpolated value, the time invested in building the BSP tree is considered
acceptable. The effort involved in building the BSP tree is expected to be on the order of nlog(n)
where n is the number of elements in the source mesh. Once the tree is built the time necessary to
search for the nearest element is expected to be on the order of log(n) [1].

Building the Tree

For this application a variant of a BSP tree known as a generalized pseudo kd-trcc [2] is
used. To build the tree the source mesh elements are recursively divided into two bounding

boxes. A bounding box is a rectilinear box aligned with the coordinate axis. It represents the
minimum bounding volume of all elements associated with the node of the tree. It could be
defined in terms of Xmjn, Xmax, Ymi„, Ymax, and Zm\n, Zmax, however for simplicity the vectors
Pmin(Xmin,Ymjn, Zmm), and Pmax(Xmax,Ymax,Zmax) are defined. Each division is based on cutting the
parent node's bounding box across its longest axis, and through the average value of all the
clement centers. Using the element centers simplifies the division, and sorting of the elements.
Each node of the tree contains:

• A pointer to an array of all elements (^Elements)

• An index to the first element in the tree's node (/„)

• The number of elements in the node {NumberOfSubElements)

• Two vectors which represent a bounding box (Pmi„, and Pma_x)

• Pointers to both sub nodes of the tree (Sn, St)

The original array of all elements is used and never copied during the process of building the
tree. Each sub-node simply points to a sub-section of the array. Elements within the array are
than reorganized/sorted by the sub-nodes. The root node of the tree is created by:

• Loading all elements from the source mesh into the element array

• Setting I0 to zero

• Setting NumberOfSubElements to the total number of elements in the source mesh

• Looping through all nodes, of each element, and calculating Pmi„, and Pmax

• Setting the Pointers So, and St to Null

The tree is grown by recursively subdividing the root until the NumberOfSubElements is 50 or
less. Nodes which have 50 or less elements become terminal, or leaf nodes. The procedure for
recursively subdividing the root node is:

If and only if the NumberOfSubElements is greater than 50:

• Find the longest edge of the bounding box

• Find the average of all the element centers

• Divide the node's bounding box with a plane that cuts orthogonally through the
longest edge of the bounding box and through the average of the element centers

• Sort the elements in the current cell so that all elements whose centers are below the
plane go in front of all the elements that are not

• Create new Sn'.

o So—>I0 = lo

o So—>NumberOfSubElements = Number of elements found below the plane

o Loop through all nodes, of each element in S0, to calculate So—>Pm<„, and
So~*Pn max

Create new 5/:

o Si—•/„ = So—>NumberOfElements

o Si^>NumberOfSubElements=N\\mbeT of elements not found to be below the
plane

o Loop through all nodes, of each element in Si, to calculate the Si—*Pmi„, and

• Repeat procedure for Sn, and Si

Searching for the Nearest Element

Once the tree is populated it is used to search for the nearest element in the source mesh to
a destination point. Given the coordinates of a destination point, the distance between it and
each sub-node's bounding box is calculated, (zero being returned if the point is inside the
bounding box). If one has a closer distance it is searched first, otherwise Si is arbitrarily
searched first. This process is repeated recursively until a terminating node is reached; at this
point each element associated with this terminating node is tested individually to find which is
closest to the destination point. The index of the closest element, and the distance that it is from
the destination point is retained during the search process to eliminate branch searches whose
bounding box is farther from the destination point than the current nearest element. For our
particular application the source mesh contained only triangular elements.

Finding the Distance to a Triangle

Before accurately computing the distance to a source triangle two preliminary tests arc
performed in an attempt to minimize the number of triangles that are rigorously tested, thus
saving additional expensive calculations. First each destination point will have an average
normal calculated for it based on all the destination mesh elements that it is part of. Each
triangle is tested to find out if the dot product of the average normal of the destination point and
the normal of the source triangle is greater than zero. Considering only source elements for
which this dot product is greater than zero ensures that only the source elements that are faced in
the same general direction as the surface of the destination point are used for interpolation. The
second test is to see if its distance to the plane of the triangle is greater than the distance to the
closest triangle so far. If this distance is less than the distance to the current nearest triangle then
more rigorous calculations are required to determine the actual distance to the triangle.

To begin calculating the actual distance to the triangle a test is performed to find out if the
destination point is over the triangle. This test is performed by considering a tetrahedron with
the destination point (Pd) at the peak, and the points to the source triangle (Po, Pi, Pi) at the base.
If the point Pa projects into the base then the distance to the plane of the triangle previously
calculated is in fact the distance to the triangle. If Pd projects outside the base then one of the
faces will be obtuse to the base, and the distance from the edge to Pa is required. Specifically if
the normal defined by source triangle (Po, Pi, P2) dotted with the normal defined by triangle (Pd,
Po, Pi) is less than zero then that face of the tetrahedron is obtuse to the base and another
calculation will be required to find the distance to the Po, Pi edge. Similarly, if the normal
defined by triangle (P0, Pi, P2) dotted with the normal defined by triangle (Pd, P|, P2) is less than
zero then another calculation will be required to find the distance to the P|, P2 edge. Also, if the
normal defined by triangle (P0, Pi, P2) dotted with the normal defined by triangle (Pa, P2, Po) is

less then zero then the distance to the P2, Po edge is required. Figure 1 contains pseudo code for
this method. This pseudo code assumes that VectorType defines the dot product using the "*"
operator and the cross product using the "|" operator.

Finding the Distance to an Edge

If during the process of calculating the distance to a source mesh triangle it is found that
the destination point cannot be projected onto the triangle then the distance to the closest edge is
computed. For example, assuming that the edge Po, Pi is the closest edge, the first step is to test

Float64 BinaryTreeType::
DistanceFromTheTriangle(const VectorType& Pd,

const VectorTypeS. PdNormal,
const ElementTypeS Element,
SearchResultsTypeS Results)

(
VectorTypeS PO = Element.PO
VectorType& PI = Element.PI
VectorTypeS P2 = Element.P2

VectorType BaseNormal = NormalToTriangle(PO,PI,P2);

Float64 d=Abs(BaseNormal*(Pd-PO)); // d=TheDistanceToThePlane

// Think of a tetrahedron pd at the peak, P0,P1,P2 at the base
// if the Pd projects into the base then the height will do.
// if Pd projects outside the base then one of the faces will
// be obtuse to the base, and the DistanceFromTheEdge will be
// required.

if (PdNormal*BaseNormal<0.0) // If normals are not in the same
if (d<Results.d) // direction Or if the distance

{ // to the plane is more then
// results then don't bother.

if (BaseNormal*NormalToTriangle(PO,PI,Pd)<0.0)// If obtuse
d=DistanceFromTheEdge(Pd,P0,P1); // use edge

else if (BaseNormal*NormalToTriangle(Pl,P2,Pd)<0.0)
d=DistanceFromTheEdge(Pd,PI,P2);

else if (BaseNormal*NormalToTriangle(P2,P0,Pd)<0.0)
d=DistanceFromTheEdge(Pd,P2,P0);

if (d<Results.d) // if distance to the Triangle is
{ // less then results then update results
Results.d = d;
Results.Index= Element.Index;

}
I

};

Figure 1. Pseudo Code for Finding the Distance to a Triangle

whether or not the triangle Pj, P0, Pi is obtuse at P(), or P|, if it is then the distance from the
obtuse point to Pd is the distance from the edge. Otherwise the height of the triangle is used as
the distance to the edge. Figure 2 contains pseudo code for this method.

Interpolation

Once the nearest source triangle to a destination point has been identified any scalar or
vector data associated with the points of the source triangle can be interpolated to the destination
point. This application uses a variant of barycentric coordinates [3,4]. Barycentric coordinates
are weighting coefficients that when multiplied by the source triangle points sum to the
destination point. Specifically barycentric coordinates satisfy the following equation,

P=Co*Po+C,*P,+C:*P:

1=C0+C,+C2

where P could be any point in the plane of the triangle and Po, Pi, P? are points of the nearest
source triangle, and Co, C|, and CT are the barycentric coordinates. By definition the barycentric
coordinates must add up to 1. The barycentric coordinates are used to interpolate any scalar by
simply multiplying the coordinates by their respective scalar values like so,

Sd=Co*So+Q*Si+C2*S2

Unfortunately, for this application P<j is not likely to lie on the plane of the triangle, so it will be
projected to the nearest point in the plane of the triangle. The barycentric coordinates are then
calculated using the following equations:

Float64 BinaryTreeType::
DistanceFromTheEdge(const VectorTypeS Pd,

const VectorTypeS PO,
const VectorType& PI)

<

VectorType L =P1-P0
VectorType R0=Pd-P0
VectorType Rl=Pd-Pl
Float64 d;

if (RO* L<0. 0)
d=Abs(Pd -PO) t

else if (Rl* L>0. 0)
d=Abs(Pd -PI) i

else
d=Abs(RO|Uni t(D)

return(d);

};

// If triangle obtuse at PO
// Use distance From The Pd to PO
// If triangle is obtuse at PI
// Use distance From The Pd to PI

// Use height of the triangle

Figure 2. Pseudo Code for Finding the Distance to an Edge

TotalArea= AreaOfTriangle (Po,Pi,P2)

Cn = AreaOfTriangle(P,P,,P2)/TotalArea

Ci = AreaOfTriangle(P,P2,P0)/ Total Area

C2 = AreaOfTriangle(P,P0,Pi)/ Total Area

In the current implementation of the code these values are always positive and as such arc
incorrect if P is outside the boundaries of the source triangle. The correct coordinates would
need to have at least one negative value if P was outside the boundaries of the source triangle.
Using the barycentric coordinates under these conditions is akin to extrapolation rather than
interpolation. In order to avoid this type of extrapolation and to ensure that we don't use
malformed barycentric coordinates, once again the tetrahedron (Pd,Po,Pi,P2) is considered, and if
any of the faces are obtuse then the method is switched to projecting Pd to the obtuse edge of the
base triangle and calculating the coefficients necessary to linearly interpolate Pd from the edge
points. If, however, Pd projects outside of the edge points then the nearest point in the triangle is
used. Figure 3 contains pseudo code for calculating the coordinates.

void GeometryPartType::
UpdateBarycentricCoordinates(const VectorType& Pd,

ElementTypeS Element,
SearchResultsTypeS Results)

{

Float64 C[3];
Float64 TotalArea;

VectorType BaseNormal;
VectorType Pm;

VectorTypeS PO=Element.PO
VectorTypeS Pl=Element.PI
VectorTypeS P2=Element.P2

BaseNormal=NormalToTriangle(PO,PI,P2);

Pm=Pd-((Pd-PO)*BaseNormal)*BaseNormal; // Pd projected to the plain

C[0]=AreaOfTriangle(Pl,P2,Pm);
C[l]=AreaOfTriangle(P2,P0,Pm);
C[2]=AreaOfTriangle(P0,Pl,Pm);

TotalArea = C[0]+C[1]+C[2];

C[0]/= TotalArea;
C[l]/= TotalArea;
C[2]/= TotalArea;

Figure 3. Pseudo Code for Calculating Barycentric Coordinates

// Think of a tetrahedron Pd at the peak, P0,P1,P2 at the base
// if the Pd projects into the base then the height will do.
// if Pd projects outside the base then one of the faces will be
// obtuse to the base, and the DistanceFromTheEdge will be
// required.
if (BaseNormal*NormalToTriangle(PO,PI, Pd)<0.0) // if obtuse face

{
C[21-0.0;
UpdateBarycentricCoordinatesFromEdge(Pd, PO, PI, C [0] , C [1]) ;
)

else if (BaseNormal*NormalToTriangle(Pl,P2,Pd)<0.0)
{
C[0]=0.0;
UpdateBarycentricCoordinatesFromEdge(Po,PI,P2,C[1],C [2]) ;
}

else if (BaseNormal*NormalToTriangle(P2, PO, Po)<0.0)
{
C[l]-0.0;
UpdateBarycentricCoordinatesFromEdge(Po, P2, PO, C [2] , C [0]) ;
I

Results.BarycentricCoordinates[0]=C[0]
Results.BarycentricCoordinates[1]=C[1]
Results.BarycentricCoordinates[2]=C[2]
};

void GeometryPartType::
UpdateBarycentricCoordinatesFromEdge(const VectorTypeS Po,

const VectorTypeS P0,
const VectorTypeS PI,
Float64& CO,
Float64& Cl)

i
VectorType L =P1-P0;
VectorType R0=Po-P0;
VectorType Rl=Po-Pl;
Float64 d;

if (R0*L<0.0)
I
C0-1.0;
Cl-0.0;
I

else if (R1*L>0.0)

C0= = 0 0;
Cl =
i

=1 0;

el se
1
Cl = = (R0* Uni t(L))/Abs (L);

};

C0 =

}

=1 0- Cl;

Figure 3. (Continued)

7

Summary

An efficient method for unstructured mesh-to-mesh interpolation has been presented. This
method uses a binary space partitioning tree to sort the elements of the source mesh. Using this
tree data structure an efficient search is performed for the source mesh element nearest each of
the destination mesh points. Once found the nearest source mesh element is used to compute
barycentric coordinates which are then used as weighting coefficients for the interpolation. This
method has been successfully implemented and used for coupling of a CFD and CSD code for
the simulation of fluid structure interaction problems.

References

1. Headington, M. and R. Riley (1997). Data Abstraction and Structures Using C++, Jones and
Bartlett Publishers, Sudbury, MA.

2. Samet, H. (2006). Foundations of Multidimensional and Metric Data Structures, Morgan
Kaufmann, San Francisco, CA.

3. Coxeter, H. (1989). Introduction to Geometry, 2nd Edition, John Wiley & Sons, Inc.,
Hoboken, NJ.

4. Ericson, C. (2005). Real Time Collision Detection, Elsevier Inc., San Francisco, CA.

This page intentionally left blank.

Distribution

Ki-Han Kim
Code 333
Ballston Centre Tower One
800 North Quincy St.
Arlington, VA 22217-5660

Captain Warren
Defense Advanced Research Projects Agency
3701 N.Fairfax Dr.
Arlington, VA 22210

Defense Technical Information Center
8725 John Kingman Road
Suite 0944
Fort Belvoir, VA 22060-6218

Copies
1

NSWC, Carderock Div. Internal Distribution

Code Name

3410 Smith, William
3452 TIC
5060 Walden, David
5700 Chang, Peter
5700 Ebert, Michael
5700 Kim, Sung-Eun
5700 Miller, Ronald
5800 Black, Scott
5800 Neely, Steve
5800 Hurwitz, Rae
6520 Thurman, Jeffery
7206 Madden, Craig

Copies

